Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis
نویسندگان
چکیده
In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed "similar" (26%) expression pattern and avoid antagonistic responses (lowest level of "prioritized" mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality.
منابع مشابه
Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality
The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiologic...
متن کاملTranscriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze]
In plants, the NAC (NAM-ATAF1/2-CUC) family of proteins constitutes several transcription factors and plays vital roles in diverse biological processes, such as growth, development, and adaption to adverse factors. Tea, as a non-alcoholic drink, is known for its bioactive ingredients and health efficacy. Currently, knowledge about NAC gene family in tea plant remains very limited. In this study...
متن کاملFunctional Characterization of Tea (Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach
Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a me...
متن کاملIntegrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)
Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants' growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq ...
متن کاملThe effects of green tea (Camellia sinensis) extract on mouse semen quality after scrotal heat stress
The objective of this study was to investigate whether or not the adverse effects of heat on sperm quality could be prevented by green tea extract (GTE) administration. Ninety adult male mice were randomly divided to two groups. The scrotum of each animal in the first group was immersed once for 20 min in a water bath maintained at 42 oC (heat group, H) and the second group (control group, C) w...
متن کامل